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1. Introduction 
 The colossal computing capabilities of graphics 

processing units (GPUs) have increasingly emerged as 

a powerful tool for high performance computing 

platforms. However, the parallel architecture of GPUs 

has exposed performance issues under conditional 

branch scenarios commonly seen in GPGPU 

applications, such as the Monte Carlo simulation of 

photon migration in Multi-Layered media (MCML). 

The lack of complex branch interpreters on GPUs 

forces the multi-core hardware to execute thread-level 

divergence codes serially, inflicting serious 

performance degradations. 

 This paper introduces a mechanism for eliminating 

thread divergence through CUDA Streams on the 

NVIDIA CUDA programming model [1]. This 

software-level optimization remaps threads that take 

different paths to alternate Streams, allowing divergent 

codes to potentially overlap and result in performance 

improvement. 

 

2. Control Flow Divergences 

 
Figure 1. Divergence in Warps 
 

2.1 SIMD Architecture 
 The architectural philosophy of GPU that inherit 

single instruction multiple data (SIMD) architecture 

requires that a bundle of threads, or warps, to run a 

single issued instruction in a lock-step fashion. As 

shown in Figure 1, control flow divergence often 

occur in scenarios where some threads execute 

different If-else paths of a divergent branch from other 

threads that reside in the same warp. Thread 

divergence within warps forces the divergent paths to 

be executed serially, creating stalled and idle threads 

during execution Control flow divergences are known 

to cause significant performance degradation due to its 

irregular load balancing between threads that take 

different paths. This irregular workload limits and 

underutilizes the available GPU resource, and is a 
main source of bottlenecks for various GPU 

applications. Given the advantages of parallelism on 

SIMD architectures, an efficient control flow 

optimization mechanism is necessary. 

 

3.  MCML Simulation 

 A typical GPU application that suffers such 

irregular control divergences is MCML. MCML is a 

Monte Carlo method for modeling steady state light 

transport in multi-layered media. MCML on GPUs 

begin by launching and injecting millions of photon 

packets into a multi-layered media, where each photon 

packet motion corresponds to a work done by a single 

thread. A possible action for each photon packet at 

every time step is a direction update, position update, 

or a fluency update. Figure 2a depicts the overall flow 

of the photon packets. Each action is dependent on the 

outcome of a Pseudo Random Number Generator. 

Since each photon, or the corresponding thread, has its 

own random number sequence, the propagation of 

each thread within a warp is a prime source of control 

flow divergence. 

                  a) MCML                                 b) Modified MCML 
 

Figure 2. Graph a) shows the flow of the original MCML, 
graph b) shows the modified flow of MCML 

 

4. Related Works 
 

4.1 Hardware Optimizations 
 Dynamic Warp Subdivision rearranges threads 

within warps into subdivided warps [2]. This 

redirection of threads aims to hide latency by 

occupying multiprocessors with newly divided non-

divergent warps. Dynamic Warp Formation combines 

threads from multiple warps that suffer from thread 
divergence [3]. This optimization regroups any threads 

within the whole SIMD scope by matching warps that 

share the same Program Counter (PC).  
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4.2 Software Optimizations 
 G-Streamline is a framework that integrates a job 

swapping mechanism of threads along with data 

layout transformations [4]. This method aims to 

remove warp-level irregularities and improve 

coalesced memory access.  

 

5. CUDA Streams for Removing Irregularity 
 In this work, a practical optimization solution is 

presented to eliminate control flow divergences 

through CUDA Streams. CUDA Streams are a 

sequence of operations deployed by the host CPU that 

can execute simultaneously on the device GPU. By 

exploiting the concurrency mechanism of CUDA 

Streams, kernels with branch divergences can be split 

and launched simultaneously on the GPU. The 

modified flow of this optimization for MCML is 

shown in Figure 2b. 

 

5.1 Splitting Divergent Kernels 
 The main idea for utilizing CUDA Streams to 

eliminate branch divergence is to divide the divergent 

path into two independent kernels, as shown in Figure 

3. After all photon packets are initialized at the 

initialization kernel, work will be split into two new 

kernels. Each divided kernel is only responsible for a 

single path in the original divergent code, and will 

reference the GPU memory that is divided according 

to the two corresponding CUDA Streams. Furthermore, 

the two independent kernels created under different 

CUDA Stream instances are executed simultaneously. 

 
Figure 3. Kernel1 and Kernel2 executed under different CUDA 
Streams 
 

 
Figure 4. Execution time of kernel splitting with CUDA 
Stream and the original branch code in microseconds 

 

5.2 Analysis 
 Rearranging the main kernel into two non-divergent 

kernels reduces the serialization of branch condition 

statements as well as the amount of registers required 

per thread, preventing thread-level resources from 

limiting the occupancy of the SIMD multiprocessors.

 The results shown in Figure 4 does not reflect a full 

implementation of the presented MCML optimization, 

but a test case for simulating a single iteration step 

with 100,000 photon packets. The results show the 

two split kernels working in an overlapping fashion, 

leading to a 1.2x speedup from the original execution. 

This benefit will be obtained for every subsequent 

time step of the simulation, resulting to a more 

significant speedup to the overall execution. Unlike 

inter-warp or intra-warp thread rearrangements done 

in previous studies, this kernel splitting optimization 

allows multiprocessors to execute both kernels 

without any transformations prior to each time step, 

minimizing overhead for every kernel launch. 

 

6. Conclusion and Future Work 
 In this paper, an optimization technique is proposed 

to eliminate branch divergences and improve control 

flow irregularities. The method employs CUDA 

Streams to allow kernels to run each path of the 

divergent branch concurrently. After splitting the 

kernel, warps can exploit hardware resources without 

being bounded by registers or transformation 

overheads. For future work, the optimization should 

be fully implemented along with an efficient 

mechanism for improving photon packet data 

movements between resources for every iteration step. 
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