1J-07

デジタルツインタービンを用いた異常検知のための

空間探索手法に関する一検討

深水 一聖1 小松 一彦2 熊谷 政仁3 小林 広明3

東北大学工学部機械知能航空工学科 車北大学サイバーサイエンスセンター²東北大学情報科学研究科³

1はじめに

タービンは火力発電所など、社会を支える重要な 電力基盤となっている.タービンの停止は大きな経 済損失となるため、停止に繋がるような異常を検出 する手法として、機械学習を用いた方法が注目され ている.しかし、機械学習に用いるデータを実ター ビンから取得するのは簡単ではなく、特に異常時の データを多数集めるのは困難である.そこで実シス テムをデジタル空間上で再現したデジタルツインタ ービンの活用が提案されている[1].これにより、 実タービンから測定せずして、タービン内部の構造 や物理現象に即したデータの取得が可能となる.

しかしながら、タービンシミュレーションデータ は膨大であり、全データでの学習は計算リソースの 観点から難しい.そこで本研究では、シミュレーシ ョン結果の膨大なデータから効果的な学習データの 抽出に向けて、データ選定手法の検討を行う.学習 データに使う翼空間の選定をタービンの特性を考慮 して探索することで、効率的な学習と実行時間の短 縮を図る.

2 デジタルツインタービンを用いた異常検知

タービンの能力低下や、停止につながる異常の主 な要因は、翼端の摩耗である.従って、翼端磨耗に よる挙動の変化から異常検知が可能である.先行研 究では、正常翼と摩耗翼をシミュレートし、翼表面 の圧力分布変動から異常検知を行っている[1].

本研究でも、様々な翼形状で翼表面の圧力をシミ ュレーションして得たデータを用いる.シミュレー ションデータを用いることで、翼表面の圧力変動か ら翼が正常か異常かを分類予測する機械学習モデル が構築できる.しかしながら、シミュレーションデ ータは膨大で、1つの翼形状でのシミュレーション 結果の元データは120GBにも上る.複数の翼形状の 全データを用いると、必要なメモリ容量は膨大とな ってしまう.

3構造特性を考慮した段・円周方向順探索 3.1提案する空間探索手法の概要

本稿では、データ量を削減するために、学習に使 用する翼空間の選定を行う、学習を全ての翼表面の 圧力データではなく、1つの翼表面で行うことで、

図1 翼空間ごとの圧力値の差分

メモリ量と実行時間を削減する.先行研究では専門 家の意見により使用する翼の選定を行っていたが, 人的コストがかかる上に,自動化が困難である.また,全ての翼のデータにおいて学習と精度評価を行 う全探索的な方法では膨大な時間がかかってしまう. そこで,タービンの特徴を考慮して,人手を介さず に,高精度な予測が可能な翼空間の探索を行う.

提案手法では、まず、タービンの構造特性を調査 するため、翼表面ごとに正常・異常形状での圧力値 の差分を調べる.そして、タービン構造特性を考慮 し、段方向だけを探索し、次に、円周方向を探索す る.これにより、必要なデータを減らしつつ、短時 間での学習を可能とする.

シミュレーションした翼形状は,7 つの正常な翼 と,段階的に摩耗された8 つの異常な翼である[2]. タービンは3段から構成され,各段には静翼と動翼 がある.各段の静翼・動翼を構成する翼の枚数は, 1段目から順に10,5,10,5,5,5枚である.また,各 翼の表面は61×61の2次元の計算格子があり,各 計算格子は200時点分の圧力時系列データを持つ.

3.2 タービンの圧力変動の調査

タービン内の構造特性調査のため、各翼空間にて 最も正常・異常な形状での圧力値の差分の大きさを 調べた. 圧力値の差分は、各翼空間の各計算格子で、 正常・異常2つの圧力時系列のユークリッド距離を 求め、翼内の平均値で評価した. 図1に各翼空間の 圧力値の差分を示す. 図1を見ると圧力値の差分は、 同じ段内、すなわち円周方向では非常に近い値をと り、段方向の変化が大きいことが分かる. これによ り、特性が類似する円周方向の探索を省くことで、

短時間での探索が実現できると考えられる.

3.3 段方向優先探索による選定

円周方向の探索を省きながら,最も高い精度での

予測が可能な翼を選定するために、まず、段方向だけを探索し、次に、円周方向を探索する方法を提案する.最初に、円周方向の中央に位置する翼空間だけで、翼ごとのデータを用いて学習と精度の評価を行う.次に最良の精度を出した段のなかで、同様に 各翼空間データでの学習時の精度を求め、最良の翼 を最終的に選定する.この手法により、性質が類似 する円周方向の探索を削減し、実行時間の短い探索 的選定が可能になる.

4 評価

4.1 実験環境

提案手法の有効性を確かめるために,隣接比較に よる貪欲法探索,全探索との性能を比較する. 貪欲 法探索では,中央の段の中央の翼空間を初期探索翼 として,学習時の精度を求め,暫定の翼とする. 次 に暫定翼の上下左右に隣接する翼空間それぞれで学 習をして,暫定翼の精度より良いものがあればそれ を次の暫定翼として,同様の比較を繰り返し,より 精度が良い翼がない場合は暫定翼を最終的に選定す る翼とする. この手法は,各翼での正解率分布が最 大値ではない極大値を持たない際に,効率よく翼空 間の探索ができる. 全探索では全ての翼空間で学習 を行い,精度が最良の翼を選定するのに用いる.

各翼空間における分類学習には k 近傍法を用いる. k 近傍法モデルは、200 時点の圧力時系列データを 入力として,正常か異常かを分類予測する.学習デ ータには、その翼に含まれる 61×61 の全ての計算 格子での 8 個の異常な翼形状での圧力時系列と、7 個の正常な翼形状での時系列データの、合計 55,815 個の圧力時系列を使用する.精度は 10 分割 の交差検証にて正解率で評価する.

提案手法と, 貪欲法探索, 全探索の性能を, 選定 した翼での正解率と, 探索した翼の数, 実行時間で 評価する.

4.2 結果と考察

表 2 に各手法での選定結果を示す.提案手法では 最良の翼の選定ができたが, 貪欲法探索では最良の 翼の選定ができていない.この理由を調べるために, 各手法の選定過程をさらに詳細に調査した.

図 2 および図 3 に提案手法と貪欲法探索による選 定の過程をそれぞれ示す.全探索による正解率の分 布を見ると,段方向での変化は大きいのに対して, 円周方向での変化は小さい.提案手法が最良の翼を 選定できたのは,全段の中央の翼だけでの比較を先 に行うことで,正解率が類似する円周方向の比較を 削減しても,正解率が高い翼の集まる段を見つける ことができたからである.また,円周方向での正解 率変化は小さいことから,探索初期位置を円周方向 の他のどの位置で行っても,段方向の比較により, 探索は最後段にたどり着く.このことから,初期位 置の依存度も小さいと言える.

表	2	評	価当	官驗	\mathcal{O}	結	果
1	~	ніі	Щノ	くらへ	~	mu.	~1>

手法	正解率	正解率 順位	探索した 翼の数	実行時間
段・円周	99.498%	1/40	10	371s(6m11s)
隣接比較	99.251%	8/40	8	304s(5m04s)
全 /	00 /08%	1/40	40	1530 c (25m30 c)

一方, 貪欲法探索では, 図 3 を見ると, 選定結果 の翼の正解率は隣接する翼よりは正解率が高い極大 値をとるが, 最良ではないことが分かる. 正解率分 布には選定結果のような極大値が他にも複数あるの で, 初期探索位置を変えても最良の翼の選定ができ ない可能性が高い. 従って, 貪欲法探索は最良の翼 を選定する手法として適切でないと言える.

また,実行時間については,どの手法でも探索した翼の数と比例関係にあることが分かる.提案手法では,円周方向の探索を削減できたため,探索した翼の数と実行時間が全探索に比べて1/4となった.以上のことから,短時間で高精度に翼を選定するのに,提案手法が有効であることが明らかになった.

5おわりに

本稿ではシミュレーションデータを用いた機械学 習によるタービン異常検知のための、タービン構造 特性を考慮して翼空間を探索的に選定する手法を提 案した.提案手法では、翼での正常・異常形状での 圧力値の差分が円周方向で類似することに着目し、 段・円周方向を順に探索を行う.実験により、精度 評価を行ったところ、精度を保ちながら 1/4 の時間 で翼の選定が可能であることが分かった.今後は計 算格子単位で選定を行う手法の検討などを行いたい.

参考文献

[1] K. Komatsu, et al., "Detection of Machinery Failure Signs From Big Time-Series Data Obtained by Flow Simulation of Intermediate-Pressure Steam Turbines," Journal of Engineer-ing for Gas Turbines and Power, 144(1):011007, January 2021.

[2] H. Miyazawa, et al., "Unsteady Flow Simulation through Stator-Rotor Blade Rows in Intermediate-Pressure Steam Turbines with Cutback Blades," Proceedings of the ASME Turbo Expo 2020, GT2020-14937.