
An LP-Based Heuristic Algorithm for the Node

Capacitated In-tree Packing Problem

田中 勇真†

Yuma Tanaka
佐々木 美裕‡

Mihiro Sasaki
柳浦 睦憲†

Mutsunori Yagiura

1 Introduction

In this paper, we consider the node capacitated in-
tree packing problem. The input consists of a directed
graph, a root node, a node capacity function and edge
consumption functions for heads and tails. The prob-
lem consists of finding the maximum number of rooted
in-trees such that the total consumption of the in-trees
at each node does not exceed the capacity of the node.

Let G = (V,E) be a directed graph, r ∈ V be a root
node and R+ be the set of nonnegative real numbers.
In addition, let t : E → R+ and h : E → R+ be
tail and head consumption functions on directed edges,
respectively, and bi ∈ R+ be the capacity of a node
i ∈ V . For convenience, we define Tall as the set of all
in-trees rooted at the given root r ∈ V in the graph G.
Let δ+

j (i) (resp., δ−j (i)) be the set of edges in an in-tree
j ∈ Tall leaving (resp., entering) a node i ∈ V . The
consumption aij of an in-tree j ∈ Tall at a node i ∈ V
is defined as

aij =
∑

e∈δ+
j (i)

t(e) +
∑

e∈δ−
j (i)

h(e). (1)

We call the first term of the above equation (1) tail
consumption, and the second term head consumption.
The node capacitated in-tree packing problem is to find
a subset T ⊆ Tall of in-trees and the packing number
xj of each in-tree j ∈ T subject to the node capacity
restriction

∑
j∈T

aijxj ≤ bi, ∀i ∈ V, (2)

so as to maximize the total number of packed in-trees∑
j∈T xj .
This problem is known to be NP-hard (Imahori et al.,

2009). Furthermore, it is still NP-hard even if instances
are restricted to complete graphs embedded in a space
with tail consumptions depending only on the distance
between end nodes.

This problem is studied in the context of sensor net-
works. Recently, several kinds of graph packing prob-
lems are studied in the context of ad hoc wireless net-
works and sensor networks. These problems are called
network lifetime problems. The important problems in-
cluded among this category are the node capacitated

†Graduate School of Information Science, Nagoya University
‡Faculty of Information Sciences and Engineering, Nanzan

University

spanning subgraph packing problems (Calinescu et al.,
2003; Heinzelman et al., 2002; Sasaki et al., 2007). For
sensor networks, for example, a spanning subgraph cor-
responds to a communication network topology for col-
lecting information from all nodes (sensors) to the root
(base station) or for sending information from the root
to all other nodes. Sending a message along an edge
consumes energy at end nodes, usually depending on
the distance between them. The use of energy for each
sensor is severely limited because the sensors use bat-
teries. It is therefore important to design the topologies
for communication in order to save energy consump-
tion and make sensors operate as long as possible. For
this problem, Heinzelman et al. (2002) proposed an al-
gorithm, called LEACH-C (low energy adaptive clus-
tering hierarchy centralized), that uses arborescences
with limited height for communication topologies. For
more energy effcient communication networks, a mul-
tiround topology construction problem was formulated
as an integer programming problem, and a heuristic
solution method was proposed by Sasaki et al. (2007).
In the formulation of Calinescu et al. (2003), head con-
sumptions are not considered, and the consumption at
each node is the maximum tail consumption among
the edges leaving the node. There are variations of the
problem with respect to additional conditions on the
spanning subgraph such as strong connectivity, sym-
metric connectivity, and directed out-tree rooted at a
given node. Calinescu et al. (2003) discussed the hard-
ness of the problem and proposed several approxima-
tion algorithms.

These network lifetime problems are similar to the
well-known edge-disjoint spanning arborescence pack-
ing problem: Given a directed graph G = (V,E) and a
root r ∈ V , find the maximum number of edge-disjoint
spanning arborescences rooted at r. The edge-disjoint
spanning arborescence packing problem is solvable in
polynomial time (Edmonds, 1973; Gabow and Manu,
1998). Its capacitated version is also solvable in polyno-
mial time (Korte and Vygen, 2007; Mader, 1981; Schri-
jver, 2003).

In this paper, we propose a two-phase heuristic al-
gorithm for the node capacitated in-tree packing prob-
lem. In the first phase, it generates candidate in-trees
to be packed. The node capacitated in-tree packing
problem can be formulated as an IP (integer program-
ming) problem, and the proposed algorithm employs
the delayed column generation method for the LP-
relaxation of the problem to generate promising can-

23

RA-004

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



didate in-trees. In the second phase, the algorithm
computes the packing number of each in-tree. Our al-
gorithm solves this second-phase problem by first mod-
ifying feasible solutions of the LP-relaxation problem
and then improving them with a greedy algorithm. We
conducted computational experiments on benchmark
instances and on randomly generated instances with
up to 200 nodes. The results show that the proposed
algorithm obtains solutions that deviate at most 0.78%
from upper bounds, and comparisons with another ap-
proach from the literature show that our method works
more effectively for this problem.

2 Formulation
A node capacitated in-tree packing problem can be

formulated as the following IP problem:

maximize
∑

j∈Tall

xj ,

subject to
∑

j∈Tall

aijxj ≤ bi, ∀i ∈ V, (3)

xj ≥ 0, xj ∈ Z, ∀j ∈ Tall.

where the notations are summarized as follows:
V : the set of nodes,
Tall: the set of all in-trees rooted at the given root

r ∈ V ,
aij : the consumption (defined by equation (1)) of

an arborescence j ∈ Tall at a node i ∈ V ,
bi: the capacity of a node i ∈ V ,
xj : the packing number of an in-tree j ∈ T ,
Z: the set of all integers.

We define Tall as the set of all in-trees rooted at the
given root r ∈ V . However, the number of in-trees
in Tall can be exponentially large, and it is difficult in
practice to handle all of them. We therefore consider a
subset T ⊆ Tall of in-trees and deal with the following
problem:

P (T ) maximize
∑
j∈T

xj ,

subject to
∑
j∈T

aijxj ≤ bi, ∀i ∈ V,

xj ≥ 0, xj ∈ Z, ∀j ∈ T.

If T = Tall, the problem P (Tall) is equivalent to the
original problem (3). We denote the optimal value of
P (T ) by OPTP (T ).

We also consider the LP relaxation problem of P (T ),
which is formally described as follows:

LP (T ) maximize
∑
j∈T

xj ,

subject to
∑
j∈T

aijxj ≤ bi, ∀i ∈ V,

xj ≥ 0, ∀j ∈ T.

When T = Tall, the problem LP (Tall) is the LP re-
laxation of the original problem (3). We denote the
optimal value of LP (T ) by OPTLP (T ).

In general, �OPTLP (T )	 (where �x	 stands for the
floor function of x) gives an upper bound of OPTP (T )

because OPTP (T ) is an integer. Note that if T 
= Tall,
then OPTLP (T ) is not necessarily an upper bound of
OPTP (Tall). For convenience, denote the vector of vari-
ables xj for all j ∈ T by (xj | j ∈ T ). Then, for any
feasible solution (xj | j ∈ T ) of LP (T ), (�xj	 | j ∈ T )
is a feasible solution of P (Tall) and its objective value
is a lower bound of OPTP (Tall).

3 In-trees Generating Algorithm
3.1 Pricing problem

We employ the delayed column generation method to
generate candidate in-trees to be packed. It starts from
an arbitrary set T ⊆ Tall, and repeatedly augments the
set T until some stopping criterion is satisfied. To apply
the delayed column generation method, we consider the
following dual of the LP relaxation problem LP (T ):

D(T ) minimize
∑
i∈V

biλi,

subject to
∑
i∈V

aijλi ≥ 1, ∀j ∈ T,

λi ≥ 0, ∀i ∈ V.

When T = Tall, the problem D(Tall) is the dual of
the LP relaxation problem LP (Tall). Thus, the pricing
problem of LP (T ) is defined as the problem of finding
an in-tree τ ∈ Tall \ T that satisfies

∑
i∈V

aiτλ∗
i < 1, (4)

where (λ∗
i | i ∈ V ) is an optimal dual solution of the

problem with the current T . If there is no in-tree which
satisfies condition (4), then the optimal value of the
problem LP (T ) cannot be improved any more. On the
other hand, if condition (4) is satisfied by a certain in-
tree τ ∈ Tall \T , then the optimal value of the problem
LP (T ) can be improved by adding the in-tree τ into T .

Let Ej be the set of all edges in each in-tree j ∈
Tall, and φ(vw) := λ∗

vt(vw) + λ∗
wh(vw) be the cost of

each edge vw ∈ E. Defining aiτ as in equation (1),
it is possible to transform the left-hand side of (4) as
follows:

∑
i∈V

aiτλ∗
i =

∑
i∈V

λ∗
i

⎧⎨
⎩

∑
e∈δ+

τ (i)

t(e) +
∑

e∈δ−
τ (i)

h(e)

⎫⎬
⎭

=
∑

vw∈Eτ

{λ∗
vt(vw) + λ∗

wh(vw)}

=
∑

vw∈Eτ

φ(vw). (5)

24

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



Thereby, after calculating the minimum value of equa-
tion (5), we know if there is a possibility of improv-
ing the optimal value of problem LP (T ) by adding an
in-tree τ . Given the costs of edges φ(vw), the prob-
lem of finding an in-tree that minimizes the total cost∑

vw∈Eτ
φ(vw) is called the minimum weight rooted ar-

borescence problem. We therefore can solve the pric-
ing problem by solving the minimum weight rooted
arborescence problem. Note that an arborescence is
usually defined as an out-tree, but the direction of the
rooted tree does not make any essential difference to
this problem.

The minimum weight rooted arborescence problem
takes as inputs a directed graph G = (V,E), a root
node r ∈ V and an edge cost function φ : E → R.
The problem consists of finding a rooted arborescence
with minimum total edge cost. The problem can be
solved in O(|E||V |) time by Edmonds’ algorithm (Ed-
monds, 1967). Bock (1971) and Chu and Liu (1965)
obtained similar results. Gabow et al. (1986) presented
the best results so far with an algorithm of time com-
plexity O(|E|+ |V | log |V |), which uses Fibonacci heap.

In each iteration of the in-tree generation phase of
our algorithm, an in-tree τ that minimizes the left-hand
side of (4) is computed and is added into T provided
that it satisfies (4).

3.2 Stopping criteria of the delayed column
generation method

In this subsection, we consider the stopping criteria
of the delayed column generation method. The follow-
ing theorem shows that we can obtain an upper bound
of OPTLP (Tall) at each iteration of the delayed column
generation method.

Theorem 1 Let λ̂i ≥ 0 be real numbers for i ∈ V

and α = minj∈Tall

{∑
i∈V aij λ̂i

}
. If α > 0 holds, then∑

i∈V bi(λ̂i/α) is an upper bound of OPTLP (Tall).

Proof: Let OPTLP (Tall) (resp., OPTD(Tall)) be the op-
timal value of the problem LP (Tall) (resp., D(Tall)).
From the duality theorem, OPTLP (Tall) = OPTD(Tall).
By the definition of α (> 0),

∑
i∈V aij λ̂i ≥ α holds for

all j ∈ Tall, which is equivalent with
∑
i∈V

aij(λ̂i/α) ≥ 1, ∀j ∈ Tall.

Thus, (λ̂i/α | i ∈ V ) is a feasible solution of
the problem D(Tall) and its objective value w =∑

i∈V bi(λ̂i/α) satisfies OPTD(Tall) ≤ w. Hence we
have OPTLP (Tall) ≤ w. �

Theorem 1 implies that we can obtain an up-
per bound of OPTP (Tall) at each iteration of the
delayed column generation method. Furthermore,

�∑i∈V bi(λ∗
i /α)	 is an upper bound of OPTP (Tall) be-

cause �OPTLP (T )	 gives an upper bound of OPTP (T )

for any T ⊆ Tall. Note that

OPTLP (T ) ≤ OPTLP (Tall) ≤
OPTLP (T )

α

always holds, where OPTLP (T ) = OPTD(T ) =∑
i∈V biλ

∗
i . Thus, we can obtain �OPTLP (Tall)	

even without executing the delayed column generation
method until the end (i.e., until there is no tree τ ∈ Tall

that satisfies (4)), provided that

�OPTLP (T )/α	 ≤ OPTLP (T ). (6)

We employ condition (6) as one of the stopping criteria
of our delayed column generation method.

If only condition (6) is employed and OPTLP (T ) is
large, then there is a possibility that the delayed col-
umn generation method generates a lot of in-trees.
Thus, we employ an additional condition

OPTLP (T )/α − OPTLP (T )

OPTLP (T )
≤ ε,

which is equivalent with

α ≥ 1
1 + ε

, (7)

where ε ≥ 0 is a parameter that represents the accu-
racy of the obtained upper bound OPTLP (T )/α against
OPTLP (Tall). In the computational experiments in Sec-
tion 5, we set ε := 0.0001. We observed through pre-
liminary computational experiments that even if the
delayed column generation method was stopped by con-
ditions (6) or (7), good solutions for P (Tall) were ob-
tained, which implies that the set of in-trees generated
until one of these conditions is satisfied seems to be suf-
ficient for obtaining high quality solutions to P (Tall).

3.3 Initial set of in-trees
The delayed column generation method can be ex-

ecuted even with only one initial in-tree. However,
we observed through preliminary experiments that the
computation time was usually reduced if an initial set
with more in-trees was given. We also noticed that for
randomly generated in-trees the computation time did
not decrease so much when we increase the number of
in-trees in the initial set beyond |V |. We therefore em-
ploy |V | randomly generated in-trees as the initial set
of in-trees.

Imahori et al. (2009) proved that finding one packed
in-tree that satisfies the node capacity restriction (2)
is NP-hard. Consequently, it is difficult to create an
initial set of in-trees for it and hence we dealt only
with problems with t(e) � bi,∀e ∈ δ+(i) and h(e) �
bi,∀e ∈ δ−(i) for all i ∈ V .

25

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



3.4 Proposed algorithm to generate in-trees
The algorithm to generate in-trees based on the

delayed column generation approach, which we call
GenInTrees, is formally described as follows:

Algorithm GenInTrees

Input a graph G = (V,E), a root node r ∈ V , tail and
head consumption functions on edges t : E → R+,
h : E → R+, node capacities bi ∈ R+ for all i ∈ V
and a parameter ε.

Output a set of in-trees T , a set S of feasible solutions
of P (T ), an upper bound �OPTLP (T )/α	 and a
lower bound

∑
j∈T �xmax

j 	.
1. Create the initial set T0 of |V | in-trees randomly.

Set T := T0, S := ∅ and xmax
j := 0 for all j ∈ T .

2. Solve the problem LP (T ). Let OPTLP (T ) be the
optimal value, (x∗

j | j ∈ T ) be the obtained opti-
mal solution and (λ∗

i | i ∈ V ) be the correspond-
ing optimal dual solution. Set S := S ∪ {(�x∗

j	 |
j ∈ T )}.

3. If
∑

j∈T �x∗
j	 >

∑
j∈T �xmax

j 	 holds, then set
xmax

j := x∗
j for all j ∈ T .

4. After setting the edge costs φ(vw) := λ∗
vt(vw) +

λ∗
wh(vw) for all vw ∈ E, execute Edmonds’ algo-

rithm. Let τ be the in-tree with minimum total
cost and α be its cost.

5. If �OPTLP (T )/α	 ≤ OPTLP (T ) or α ≥ 1/(1 + ε)
holds, then output the set of in-trees T , the
upper bound �OPTLP (T )/α	, the lower bound∑

j∈T �xmax
j 	 and stop. Else set T := T ∪ {τ} and

return to Step 2.

The GenInTrees algorithm outputs a set S of fea-
sible solutions of P (T ). Although it is not necessarily
to keep the set S for executing the GenInTrees algo-
rithm, it contains useful information to be used by the
algorithm presented next.

4 In-trees Packing Algorithm
4.1 Evaluation criteria of in-trees

The GenInTrees algorithm could generate in-trees
to obtain high quality solutions of P (Tall). In this sub-
section, we propose a greedy algorithm to pack the in-
trees enumerated by the GenInTrees algorithm. We
use the maximum packing number, calculated based on
the available capacity in each node, as the evaluation
criterion of each in-tree. Let (xj | j ∈ T ) be the cur-
rent feasible solution of P (Tall). The current available
capacity in each node i ∈ V is defined as

b̄i = bi −
∑
j∈T

aijxj . (8)

Then the maximum packing number Δj of each in-tree
j ∈ T is calculated as follows:

Δj = min
i∈V

⌊
b̄i

aij

⌋
. (9)

In the remainder of this subsection, we focus on one
iteration of our greedy algorithm, i.e., which in-tree j
is chosen to increase its packing number xj , and how
much xj is increased.

In each iteration of our greedy algorithm, an in-tree
j ∈ T that maximizes Δj is chosen and the value of xj

is increased. Let j∗ ∈ T be an in-tree with the highest
Δj among all j ∈ T . A simple approach to decide the
amount of increment is to use the value of Δj∗ (i.e.,
xj∗ := xj∗ + Δj∗); however, this approach does not
give good solutions for P (Tall). The available capacities
b̄i on the nodes are decreased as the packing number
xj∗ of the in-tree j∗ ∈ T is increased, and the amount
of decrement of Δj is different among in-trees. Thus,
we employ an approach in which the in-tree with the
highest Δj is packed while its Δj value is the highest.

For any in-tree j ∈ T \ {j∗}, we define qj as the
minimum value such that after increasing xj∗ by qj , the
resulting Δj∗ becomes smaller than the resulting Δj .
Such a value of qj must satisfy the following condition
for all i ∈ V : ⌊

b̄i − aij∗qj

aij

⌋
> Δj∗ − qj . (10)

Because we use qj as the value to increase the packing
number xj∗ of in-tree j∗, it has to satisfy

0 ≤ qj ≤ Δj∗ . (11)

The right-hand side of (10) is an integer and hence the
condition (10) is equivalent to

b̄i − aij∗qj

aij
− 1 ≥ Δj∗ − qj . (12)

Let �x� be the ceiling function of x. Condition (12) is
satisfied for all i ∈ V if and only if

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⌊
b̄i − aij(Δj∗ + 1)

aij∗ − aij

⌋
≥ qj , (aij∗ > aij), (13)

⌈
aij(Δj∗ + 1) − b̄i

aij − aij∗

⌉
≤ qj , (aij∗ < aij), (14)

⌊
b̄i

aij

⌋
≥ Δj∗ , (aij∗ = aij), (15)

are satisfied for all i ∈ V . Let Qj ⊆ Z be the set of
all integer values of qj that satisfy (11), (13) and (14)
for all i ∈ V . If Qj = ∅ holds or condition (15) is not
satisfied for some i ∈ V , then Δj never becomes higher
than Δj∗ (in this case, we assume qj = +∞ for con-
venience). Otherwise, Δj becomes higher than Δj∗ by
increasing xj∗ by qj = min{Qj}. Hence, if we increase
the value of xj∗ by q, where q = minj∈T\{j∗}{qj}, Δj

becomes higher than Δj∗ for some j ∈ T \ {j∗}.

4.2 Efficient data structure
It is necessary to recalculate Δj and qj for all in-trees

whenever an in-tree j∗ with the highest Δj among all

26

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



j ∈ T is packed. We propose an efficient method to
recalculate these values, which eliminates unnecessary
recalculation by maintaining a sorted array such that
its elements are upper bounds of Δj .

Let D be an array with |T | elements sorted in non-
increasing order and jk ∈ T be the index of the
tree corresponding to the kth cell of D. This array
is maintained so that it satisfies Δjk

≤ D[k] for all
k ∈ {1, . . . , |T |} and Δj1 = D[1]. Then the in-tree j1
has the highest Δj among all j ∈ T .

The algorithm calculates the values of qjk
for k =

2, 3, . . . in this order, by conditions (11), (13), (14) and
(15). Assume that the values of qjk

are calculated until
the element in the k′th position. We define qmin

jk′ as the
minimum value of qjk

among the ones calculated, i.e.,
qmin
jk′ = mink∈[2,k′] qjk

. Hence, if we increase the value
of xj1 by qmin

jk′ , there is at lease one in-tree whose Δjk

becomes higher than Δj1 among the ones calculated
(provided that qmin

jk′ is finite). Then, suppose

D[k′ + 1] ≤ Δj1 − qmin
jk′ . (16)

Because D is sorted, D[k] ≤ Δj1 − qmin
jk′ holds for all

k ≥ k′ + 1. By definition, Δjk
≤ D[k] holds for all

k ∈ {1, . . . , |T |} and the value of Δjk
never increases

for all k when xj1 is increased. Hence, for all k ≥ k′+1,
Δjk

does not exceed Δj1 unless the increment in xj1 is
bigger then qmin

jk′ , which implies qjk
> qmin

jk′ . Therefore,
if condition (16) is satisfied, qmin

jk′ = q = minj∈T\{j∗} qj

holds, and hence it is not necessary to calculate qjk
for

all k ≥ k′ + 1. Then the value of xj1 is increased by
q and the values of b̄i are updated for all i ∈ V by
recomputing them by (8).

We can reduce the computational effort to update
Δjk

for all k ∈ {1, . . . , |T |} by using a similar idea to
the one for calculating q. For k = 1, 2, . . . in this order,
the algorithm calculates Δjk

by (9). We denote the new
value of Δjk

by Δ̄jk
. Assume that the values of Δ̄jk

are
calculated until the element in the k′′th position. We
define Δ̄min

jk′′ as the minimum value of Δ̄jk
among the

ones calculated, i.e., Δ̄min
jk′′ = mink∈[1,k′′] Δ̄jk

. Suppose

D[k′′ + 1] < Δ̄min
jk′′ . (17)

Because D is sorted, D[k] < Δ̄min
jk′′ holds for all k ≥ k′′+

1. Then the algorithm stops recalculating Δjk
, and for

k = 1, 2, . . . , k′′, it updates D[k] with the recomputed
value Δ̄jk

(i.e., D[k] := Δ̄jk
). Afterwards, it sorts the

first k′′ elements of D in the non-increasing order. The
resulting array D is sorted in the whole range (i.e.,
D[1] ≥ D[2] ≥ · · · ≥ D[|T |] holds), and it satisfies
Δ̄jk

≤ D[k] for all k ∈ {1, . . . , |T |} and Δ̄j1 = D[1],
since we have Δ̄jk

≤ Δjk
.

4.3 Proposed algorithm to pack in-trees
This section summarizes the greedy algorithm pro-

posed in Section 4.1, together with the data structure

in Section 4.2. We call the algorithm PackInTrees,
which is formally described as follows.

Algorithm PackInTrees

Input a problem instance of P (T ) and a feasible solu-
tion (x(0)

j | j ∈ T ) of P (T ).
Output a feasible solution (xj | j ∈ T ) of P (T ).

1. Set xj := x
(0)
j for all j ∈ T and calculate available

capacities b̄i for all i ∈ V by (8).
2. Calculate the evaluation criteria Δj for all j ∈ T

by 8 and set D[j] := Δj .
3. Sort D in the non-increasing order, and let jk ∈ T

be the index of the tree corresponding to the
kth cell of D, i.e., D[k] = Δjk

holds for all
k ∈ {1, . . . , |T |}, and Δj1 ≥ Δj2 ≥ · · · ≥ Δj|T |
is satisfied.

4. Set qmin := D[1] and k := 2.
5. Let Qjk

⊆ Z be the set of all integer values of qjk

that satisfy (11), (13) and (14) with j = jk for all
i ∈ V . If Qjk


= ∅ and qjk
= min{Qjk

} < qmin

are satisfied and (15) holds for all i ∈ V , then set
qmin := qjk

.
6. If k = |T |, then go to Step 8.
7. If D[k + 1] > D[1] − qmin, then set k := k + 1 and

return to Step 5.
8. Set xj1 := xj1 + qmin. Recalculate available capac-

ities b̄i for all i ∈ V by 8.
9. Set Δmin := D[1] and k := 1.

10. Recalculate Δjk
by (9) and set D[k] := Δjk

. If
Δjk

< Δmin, then set Δmin := Δjk
.

11. If k = |T |, then go to Step 13.
12. If D[k + 1] ≥ Δmin, then set k := k + 1 and return

to Step 10.
13. Sort the first k elements of D in the non-increasing

order, and modify jk̂ (k̂ ∈ {1, . . . , k}) accordingly.
14. If D[1] = 0, then output the feasible solution (xj |

j ∈ T ) and stop; otherwise, return to Step 4.

One iteration of the PackInTrees algorithm con-
sists of calculating qmin and Δmin and sorting D. Its
worst case time complexity is O(|V ||T | + |T | log |T |).
Let k′ be the value of k in Step 8 and k′′ be the value
of k in Step 13. It is not hard to show that k′′ ≥
k′ holds, and by using these parameters, the actual
time complexity becomes O(|V |(k′ +k′′)+k′′ log k′′) =
O(k′′(|V |+log k′′)), which is usually much smaller than
the worst-case complexity because k′′ � |T | holds in
many cases. In each iteration, at least one in-tree is
packed and hence the maximum number of iterations
is OPTLP (Tall). Hence, the whole algorithm runs in
O(OPTLP (Tall)(|V ||T | + |T | log |T |)) time.

We set an initial feasible solution (x(0)
j | j ∈ T )

as an input for the PackInTrees algorithm. We
observed through preliminary experiments that if we
set x

(0)
j := 0 for all j ∈ T , the PackInTrees algo-

rithm does not output good solutions. On the other

27

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



hand, good solutions are found by setting some of
the solutions obtained by the GenInTrees algorithm,
(�x∗

j	 | j ∈ T ) ∈ S, as the initial feasible solution
of PackInTrees algorithm. Let � be the number of
times PackInTrees algorithm is executed. We em-
ploy the � solutions with largest objective values. In
case of ties, we prefer the solutions generated later by
the GenInTrees algorithm.

5 Computational Experiments

5.1 Problem instances

We use two types of instances in our experiment.
The first one is based on sensor location data used
by Heinzelman et al. (2002) and Sasaki et al. (2007)
in their papers about sensor networks. From their
data, we generated complete graphs with symmetric
tail and head consumption functions and node capac-
ities, where the consumption functions are equivalent
to the amount of energy consumed to transmit and re-
ceive packets, and node capacities are equivalent to the
capacities of sensor batteries in their papers. We call
the instances hcb100, sfis100-1, sfis100-2 and sfis100-
3, where hcb100 is the instance generated using the
sensor location data in Heinzelman et al. (2002), and
sfis100-1, 2 and 3 are the instances generated using the
sensor location data called data1, 2 and 3, respectively,
in Sasaki et al. (2007).

The second type consists of random graphs whose
out-degrees are distributed in a small range. We named
them as “rndn-dmin-dmax,” where n is the number of
nodes, dmin is the minimum out-degree, and dmax is the
maximum out-degree. Three problem instances were
generated, which are rnd100-5-10, rnd100-30-50 and
rnd200-5-10. Tail and head consumptions for these in-
stances were randomly chosen from the integers in the
intervals [10, 50] and [1, 5], respectively, for all edges
except that the tail consumption of edges entering the
root node r were randomly chosen from the integers in
the intervals [100, 500] so that these edges cannot be
used frequently. Node capacities were set to 100,000
for all i ∈ V \ {r} and +∞ for the root node r.

The algorithms were coded in the C++ language and
ran on a Dell Precision 470 (Xeon (NetBurst) 3GHz,
2MB cache, 1GB memory). We used the primal sim-
plex method in GLPK4.34∗ as LP solver.

5.2 Experimental results

Figure 1 represents the behavior of GenInTrees al-
gorithm applied to sfis100-1. The figure shows the im-
provement of OPTLP (T ) and of the best values of the
upper and lower bounds of P (Tall) as in-trees are added
to T in each iteration. Along with this improvement,

∗GLPK-GNU Project-Free Software Foundation (FSF), http:
//www.gnu.org/software/glpk/, 20, April, 2009.

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0  200  400  600  800  1000  1200  1400  1600  1800

OPTLP (T )

upper bound
lower bound

number of generated trees

ob
je

ct
iv

e
va

lu
e

Figure 1. Behavior of the GenInTrees algorithm ap-
plied to sfis100-1

the difference between the upper and lower bounds be-
comes smaller and the ratios of improvement decrease.
In general, this tendency is often observed when ap-
plying the delayed column generation method. After
a certain number of iterations, we can affirm that we
obtained good upper and lower bounds.

The solutions output by the GenInTrees algorithm
are used as the initial solutions for the PackInTrees
algorithm. Figure 2 shows the relationship be-
tween the objective values of the solutions output
by the GenInTrees algorithm (horizontal axis) and
the objective values of the solutions output by the
PackInTrees algorithm (vertical axis) applied to
sfis100-1. From the figure, we can notice a strong cor-
relation between the values. This tendency was also
observed for other instances. Thus, it is not necessary
to input the solutions of GenInTrees with small ob-
jective values into the PackInTrees algorithm, and
for this reason, we use only a percentage of solutions
with largest objective values for the initial solutions of
PackInTrees.

Table 1 shows the results of the proposed algorithm
with � = 1, �0.01|T |	, �0.05|T |	 and |T | for the prob-
lem instances explained in Section 5.1. The first three
columns represent instance names, number of nodes
(without the root node) |V \{r}|, and number of edges
|E|. Column |T | shows the number of in-trees gener-
ated by algorithm GenInTrees, and columns UB and
LB show the upper and lower bounds of OPTP (Tall), re-
spectively, computed by GenInTrees. The following
columns represent objective values, denoted “Obj.,”
and computation times in seconds of the proposed al-
gorithm for the four values of �. Comparing the re-
sults for � = 1 and � = �0.01|T |	, we can notice that
some objective values improve. From � = �0.01|T |	 to
� = �0.05|T |	, only the objective value of sfis100-1 im-
proves. Moreover, when we increase the value of � over
�0.05|T |	, the objective value does not improve. These

28

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



Table 1. Influence of parameter � on the results of the proposed algorithm

Instance name |V \ {r}| |E| GenInTrees � = 1 � = �0.01|T |� � = �0.05|T |� � = |T |
|T | UB LB Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s)

hcb100 100 10,100 2752 1124 1095 1121 210 1121 213 1121 230 1121 651
sfis100-1 100 10,100 1669 1097 1064 1089 83 1090 85 1092 95 1092 293
sfis100-2 100 10,100 1700 1097 1065 1090 87 1090 90 1090 96 1090 307
sfis100-3 100 10,100 1378 1101 1067 1095 59 1095 60 1095 65 1095 171
rnd100-5-10 100 776 940 3225 3186 3210 31 3212 31 3212 33 3212 76
rnd100-30-50 100 3991 1985 6250 6209 6235 99 6235 99 6235 106 6235 201
rnd200-5-10 200 1525 2237 2702 2631 2677 1011 2681 1015 2681 1032 2681 1701

 800

 850

 900

 950

 1000

 1050

 1100

 750  800  850  900  950  1000  1050  1100

objective value (GenInTrees)

ob
je

ct
iv

e
va

lu
e

(P
a
c
k
In

T
r
e
e
s)

Figure 2. Relationship between objective values of the
input (given by GenInTrees) and output solutions for
PackInTrees applied to sfis100-1

results are consistent with the ones observed from Fig-
ure 2. The computation time increases about 2–3 times
if we compare � = 1 and � = |T |, and about 10% if we
compare � = 1 and � = �0.05|T |	. The proposed al-
gorithm is not sensitive to the value of � and it is not
necessary to make an effort to tune it. Thus, we set
� := �0.05|T |	.

We then compare the solutions obtained by the pro-
posed algorithm with the ones obtained by the algo-
rithm in Sasaki et al. (2007). Note that their algo-
rithm keeps sending packets even though the base sta-
tion does not receive packets from all sensors, where
this situation happens only if there exists at least one
sensor whose battery has run out, and they reported
the number of times packets are sent (which they call
rounds) for several values of the number of available
sensors. Among such results, we use the number of
rounds when all sensors are available, because in this
paper we consider the number of spanning in-trees,
which corresponds to the number of times packets are
sent from all the sensors.

Table 2 compares the solutions obtained by the pro-
posed algorithm with the ones obtained by the algo-
rithm in Sasaki et al. (2007). The first six columns are
equivalent to the first six columns of Table 1. The next

four columns show the results of the proposed algo-
rithm with � = �0.05|T |	: the objective values, the gaps
in % between UB and Obj., i.e., ((UB − Obj.)/UB) ×
100, the numbers of in-trees used in the best solutions,
i.e., |Tpos(xbest)|, where Tpos(x) = {j ∈ T | xj > 0} and
xbest represents the best solution obtained by the pro-
posed algorithm, and computation times in seconds.
The number of rounds reported in Sasaki et al. (2007),
which are equivalent to the number of packed in-trees,
is also shown for comparison purposes, where a mark
“–” means that the result is not available.

The results presented in Table 2 show that our algo-
rithm obtains better results than Sasaki et al. (2007).
The gaps between upper bounds and objective values
are quite small, indicating that the obtained solutions
are close to OPTP (Tall). We can also observe that
the number of in-trees used in the best solution xbest

is always smaller than the number of nodes, ranging
around 70–80% of |V | except for two instances. In-
stance rnd200-5-10 is the only one with 200 nodes and
although the number of edges is not much bigger than
other instances, the computation time is at least 10
times bigger except for hcb100. Thus, the compu-
tational effort increases rapidly when the number of
nodes increases. One of the reasons for this behavior
is the increase of the computational effort of the LP
solver.

6 Conclusions
In this paper, we proposed a two-phase heuristic al-

gorithm for the node capacitated in-tree packing prob-
lem. In the first phase, it generates candidate in-trees
to be packed employing the delayed column genera-
tion method for the LP-relaxation of the problem. We
showed that solving the pricing problem is equivalent to
solving the minimum weight rooted arborescence prob-
lem. In the second phase, the algorithm computes the
packing number of each in-tree by first modifying fea-
sible solutions of the LP-relaxation problem and then
improving them with a greedy algorithm. We proposed
an efficient data structure that makes use of the proper-
ties of the evaluation criteria. The proposed algorithm
obtains solutions that are close to the upper bounds
and is proved to be effective for this problem.

29

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）



Table 2. Computational results

Instance name |V \ {r}| |E| GenInTrees Proposed Algorithm (� = �0.05|T |�) Sasaki et el.
|T | UB LB Obj. Gap (%) |Tpos(xbest)| Time (s) (2007)

hcb100 100 10,100 2752 1124 1095 1121 0.27 69 230 –
sfis100-1 100 10,100 1669 1097 1064 1092 0.46 77 95 961
sfis100-2 100 10,100 1700 1097 1065 1090 0.64 74 96 969
sfis100-3 100 10,100 1378 1101 1067 1095 0.54 75 65 1022
rnd100-5-10 100 776 940 3225 3186 3212 0.40 98 33 –
rnd100-30-50 100 3991 1985 6250 6209 6235 0.24 95 106 –
rnd200-5-10 200 1525 2237 2702 2631 2681 0.78 154 1032 –

Acknowledgment
The authors would like to thank Celso Satoshi

Sakuraba for his detailed comments on earlier versions
of this paper.

References
Bock, F. C. (1971). An algorithm to construct a mini-

mum directed spanning tree in a directed network.
In Avi-Itzak, B., editor, Developments in Opera-
tions Research, pages 29–44. Gordon and Breach,
New York.

Calinescu, G., Kapoor, S., Olshevsky, A., and Ze-
likovsky, A. (2003). Network lifetime and power
assignment in ad-hoc wireless networks. In Pro-
ceedings of the 11th European Symposium on Algo-
rithms, volume 2832 of Lectre Notes in Computer
Science, pages 114–126. Springer.

Chu, Y. and Liu, T. (1965). On the shortest arbores-
cence of a directed graph. Science Sinica, 14:1396–
1400.

Edmonds, J. (1967). Optimum branchings. Journal
of Research of the National Bureau of Standards,
71B:233–240.

Edmonds, J. (1973). Edge-disjoint branchings. In
Rustin, B., editor, Combinatorial Algorithms,
pages 91–96. Academic Press.

Gabow, H. N., Galil, Z., Spencer, T., and Tarjan, R. E.
(1986). Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs.
Combinatorica Archive, 6:109–122.

Gabow, H. N. and Manu, K. S. (1998). Packing algo-
rithms for arborescences (and spanning trees) in
capacitated graphs. Mathematical Programming,
82:83–109.

Heinzelman, W. B., Chandrakasan, A. P., and Balakr-
ishnan, H. (2002). An application-specific proto-
col archtiecture for wireless microsensor networks.
IEEE Transactions on Wireless Communications,
1:660–670.

Imahori, S., Miyamoto, Y., Hashimoto, H., Kobayashi,
Y., Sasaki, M., and Yagiura, M. (2009). The com-
plexity of the node capacitated in-tree packing
problem. In Proceedings of International Network
Optimization Conference.

Korte, B. and Vygen, J. (2007). Combinatorial Op-
timization: Theory and Algorithms. Springer-
Verlag, 4th edition.

Mader, W. (1981). On n-edge-connected digraphs.
Combinatorica, 1:385–386.

Sasaki, M., Furuta, T., Ishizaki, F., and Suzuki, A.
(2007). Multi-round topology construction in wire-
less sensor networks. In Proceedings of the Asia-
Pacific Symposium on Queueing Theory and Net-
work Applications, pages 377–384.

Schrijver, A. (2003). Combinatorial Optimization.
Springer-Verlag.

30

FIT2009（第8回情報科学技術フォーラム）

（第1分冊）




