A-007

Approximation Algorithms for Optimal RNA Secondary Structures Common to Multiple Sequences

Takeyuki Tamura^{*}

Tatsuya Akutsu*

1 Introduction

RNA secondary structure prediction is an important problem in computational biology and thus many computational studies have been done. This is a problem of, given an RNA sequence of length n, finding its correct secondary structure. Usually, RNA secondary structure prediction is modeled as a free energy minimization problem [7, 9]. For this problem, [10] and [11] proposed simple DP (dynamic programming) algorithms. The time complexities of those DP algorithms were $O(n^3)$ if we ignore the destabilizing energy due to loop regions, otherwise they were at least $O(n^4)$.

In a basic and simplest version, free-energy minimization of an RNA secondary structure is defined as a problem of maximizing the number of complementary base pairs, which is denoted by \mathbf{RNA}_0 in this paper. Even for \mathbf{RNA}_0 , only an $O(n^3)$ time simple DP algorithm had been known [7, 9].

An $O(n^{2.776} + (1/\epsilon)^{O(1)})$ time approximation algorithm was also shown for \mathbf{RNA}_0 in [1], which always outputs an RNA secondary structure with the score at least $1 - \epsilon$ of the maximum, where ϵ is any positive constant number and the score denotes the number of complementary base pairs in \mathbf{RNA}_0 . Although this algorithm can be considered as a PTAS (polynomial time approximation scheme), it is different from usual PTAS since the problem is not NP-hard but belongs to P. This algorithm is a combination of an approximation algorithm \mathcal{A}_{approx} and an exact algorithm \mathcal{A}_{exact} , where \mathcal{A}_{approx} is obtained by modifying the original $O(n^3)$ time DP algorithm for \mathbf{RNA}_0 , and \mathcal{A}_{exact} is obtained by combining Valiant's algorithm with fast funny matrix multiplication.

In order to improve the prediction accuracy, an approach using multiple RNA sequences from the same RNA family was proposed [6]. An $O(n^6)$ time exact algorithm was shown in [6] which can optimize structure and alignments when two RNA sequences are given. Though some efforts have been done [2, 3], the worst case time complexity has not been improved. In this paper, we show an $O(n^5)$ time approximation algorithm for optimizing structure and alignments of two RNA sequences with assuming that the optimal number of base-pairs is more than $O(n^{0.75})$. We also show that the problem to optimize structure and alignments for given N sequences is NP-hard and introduce a constant-factor approximation algorithm.

2 RNA secondary structure when multiple sequences are given

Let $A_1 = a_{1,1}a_{1,2}...a_{1,n_1}$, $A_2 = a_{2,1}a_{2,2}...a_{2,n_2}$, ..., and $A_N = a_{N,1}a_{N,2}...a_{N,n_N}$ be RNA sequences, where $\max\{n_1, n_2, ..., n_N\} = n$. Thus, $A_1, A_2, ..., A_N$ are strings over an alphabet $\Sigma = \{a, u, g, c\}$. A family of pairs of indices $M_N = \langle \{(1, 1_j) | 1 \leq 1_i < 1_j \leq n_1, (a_{1,1_i}, a_{1,1_j}) \text{ is a base pair} \}$, $\{(2_i, 2_j) | 1 \leq 2_i < 2_j \leq n_2, (a_{2,2_i}, a_{2,2_j}) \text{ is a base pair} \}$, \dots , $\{(N_i, N_j) | 1 \leq N_i < N_j \leq n_N, (a_{N,N_i}, a_{N,N_j}) \text{ is a base pair} \}$ is called an *N*-common *RNA secondary* structure if $a_{1,1_i} = a_{2,2_i} = \cdots = a_{N,N_i}$ and $a_{1,1_j} = a_{2,2_j} = \cdots = a_{N,N_j}$, and no distinct pairs $(x_i, x_j), (x_h, x_k)$ in M_N satisfy $x_i \leq x_h \leq x_j \leq x_k$ for all x $(1 \leq x \leq N)$. The score of M_N is defined as the number of base pairs in each element of M_N (i.e., |e| for any e in M_N), and denoted by $score(M_N)$. Then, **RNA**₀(N) is defined as follows: given N RNA sequence A_1, A_2, \ldots, A_N , to find an N-common RNA secondary structure, and denoted by $OPT(\mathbf{RNA}_0(N))$.

3 $1 - \epsilon$ approximation algorithm for **RNA**₀(2)

As mentioned above, in $\mathbf{RNA}_0(2)$, two sequences are given. Let (i_1, j_1) be a pair of indices which correspond to the leftmost and rightmost residues of the first sequence respectively. Similarly, let (i_2, j_2) be a pair of indices which correspond to the leftmost and rightmost residues of the other sequence respectively. $\mathbf{RNA}_0(2)$ can be solved in $O(n^6)$ time by the following DP procedure [6]:

$$D(i_1, j_1, i_2, j_2) = \max \begin{cases} D(i_1 + 1, j_1, i_2, j_2) \\ D(i_1, j_1 - 1, i_2, j_2) \\ D(i_1, j_1, i_2 + 1, j_2) \\ D(i_1, j_1, i_2, j_2 - 1) \\ D(i_1 + 1, j_1 - 1, i_2 + 1, j_2 - 1) + f(i_1, j_1, i_2, j_2) \\ \max_{i_1 < k_1 < j_1, i_2 < k_2 < j_2} \{D(i_1, k_1, i_2, k_2) + D(k_1 + 1, j_1, k_2 + 1, j_2)\}, \end{cases}$$

where f(a, u, a, u) = 1, f(u, a, u, a) = 1, f(g, c, g, c) = 1, f(c, g, c, g) = 1, otherwise f is zero.

The technique for the approximation algorithm of \mathbf{RNA}_0 [1] can be applied to $\mathbf{RNA}_0(2)$ with assuming $OPT(\mathbf{RNA}_0(N))$ is large, where additional ideas are required for analysis of the approximation ratio. As in [1], we do not compute $\max_{i_1 < k_1 < j_1, i_2 < k_2 < j_2} \{D(i_1, k_1, i_2, k_2) + D(k_1 + 1, j_1, k_2 + 1, j_2)\}$ exactly. Instead, we compute the maximum of $D(i_1, k_1, i_2, k_2) + D(k_1 + 1, j_2)\}$ for $O(\{n^{\alpha} + n^{1-\beta}\}^2)$ values of (k_1, k_2) , where α and β ($0 < \alpha, \beta < 1$) are appropriate constants to be determined later. We define a sequence of indices $f_{i_1}^+(h)$ and $f_{j_1}^+(h)$ for $h_1 = 0, 1, 2, \ldots$ by $f_{i_1}^+(0) = i_1 + \lceil n^{\alpha} \rceil$, $f_{j_1}^-(0) = j_1 - \lceil n^{\alpha} \rceil$

$$f_{i_1}^+(h_1+1) = f_{i_1}^+(h_1) + \lceil (f_{i_1}^+(h_1) - i_1)^\beta \rceil, \quad f_{j_1}^{-1}(h_1+1) = f_{j_1}^-(h_1) - \lceil (j_1 - f_{j_1}^-(h_1))^\beta \rceil$$

Next, we define $\mathcal{I}_1(i,j)$ by

$$\mathcal{I}_{1}(i_{1}, j_{1}) = \{k_{1} | i_{1} < k_{1} \le n^{\alpha} \text{ or } j_{1} - n^{\alpha} \le k_{1} \le j_{1}\} \cup \{f_{i_{1}}^{+}(h_{1}) | f_{i_{1}}^{+}(h_{1}) \le (i_{1} + j_{1})/2\} \cup \{f_{j_{1}}^{-}(h_{1}) | f_{j_{1}}^{-}(h_{1}) \ge (i_{1} + j_{1})/2\}.$$

^{*}Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.

Similarly, we define a sequence of indices $f_{i_2}^+(h_2)$ and $f_{j_2}^+(h_2)$ for $h_2 = 0, 1, 2, \ldots$ and $\mathcal{I}_1(i, j)$ by

$$\begin{aligned} f_{i_{2}}^{+}(0) &= i_{2} + |n^{\alpha}|, & f_{j_{2}}^{-}(0) = j_{2} - |n^{\alpha}| \\ f_{i_{2}}^{+}(h_{2}+1) &= f_{i_{2}}^{+}(h_{2}) + \lceil (f_{i_{2}}^{+}(h_{2}) - i_{2})^{\beta} \rceil, & f_{j_{2}}^{-}(h_{2}+1) = f_{j_{2}}^{-}(h_{2}) - \lceil (j_{2} - f_{j_{2}}^{-}(h_{2}))^{\beta} \rceil \\ \mathcal{I}_{2}(i_{2}, j_{2}) &= \{k_{2}|i_{2} < k_{2} \leq n^{\alpha} \quad or \quad j_{2} - n^{\alpha} \leq k_{2} \leq j_{2}\} \cup \{f_{i_{2}}^{+}(h_{2})|f_{i_{2}}^{+}(h_{2}) \leq (i_{2} + j_{2})/2\} \\ \cup \{f_{j_{2}}^{-}(h_{2})|f_{j_{2}}^{-}(h_{2}) \geq (i_{2} + j_{2})/2\}. \end{aligned}$$

Then, the approximation algorithm $\mathcal{A}_{approx}(2)$ is expressed by the following DP procedure:

$$D'(i_1, j_1, i_2, j_2) = \max \begin{cases} D'(i_1 + 1, j_1, i_2, j_2) \\ D'(i_1, j_1 - 1, i_2, j_2) \\ D'(i_1, j_1, i_2 + 1, j_2) \\ D'(i_1, j_1, i_2, j_2 - 1) \\ D'(i_1 + 1, j_1 - 1, i_2 + 1, j_2 - 1) + f(i_1, j_1, i_2, j_2) \\ \max_{k_1 \in \mathcal{I}_1(i_1, j_1), k_2 \in \mathcal{I}_2(i_1, j_1)} \{D'(i_1, k_1, i_2, k_2) + D'(k_1 + 1, j_1, k_2 + 1, j_2)\}, \end{cases}$$

where f(a, u, a, u) = 1, f(u, a, u, a) = 1, f(g, c, g, c) = 1, f(c, g, c, g) = 1, otherwise f is zero.

Lemma 1 $\mathcal{A}_{approx}(2)$ works in $O(n^{2\alpha+4} + n^{6-2\beta} + n^{5+\alpha-\beta})$ time.

Here, we define the error of an N-common secondary structure M_N to $OPT(\mathbf{RNA}_0(N))$ to be $score(\mathbf{RNA}_0(N))) - score(M_N)$ (note that this value must be non-negative).

Lemma 2 The error of a secondary structure M_N computed by \mathcal{A}_{approx} is $O(n^{1+\alpha\beta-\alpha})$.

Theorem 1 When $OPT(\mathbf{RNA}_0(N)) > O(n^{0.75})$, an N-common RNA secondary structure with the score at least $1 - \epsilon$ of the maximum can be computed in $O(n^5)$ time, where ϵ is any positive constant number.

It is known that the Longest Common Subsequence problem (LCS) over an alphabet of size 2 is NP-hard [4, 5]. Using a reduction from LCS, we have:

Theorem 2 $\mathbf{RNA}_0(N)$ is NP-hard if N is not fixed.

Theorem 3 There is an O(Nn) time approximation algorithm for $\mathbf{RNA}_0(N)$ with the score at least 1/4 of the maximum.

4 Concluding remarks

In this paper, we proposed an $O(n^5)$ time $(1-\epsilon)$ -approximation algorithm for optimal RNA secondary structures common to two sequences with assuming that the optimal score is more than $O(n^{0.75})$. In order to delete this assumption, we should combine Valiant's algorithm [8] with the proposed algorithm. We also showed that the problem is NP-hard for general N and introduced an O(Nn) time 1/4-approximation algorithm. Improvement of this approximation ratio is left as an open problem.

References

- T. AKUTSU, Approximation and exact algorithms for RNA secondary structure prediction and recognition of stochastic context-free languages, Journal of Combinatorial Optimization (1999) 3:321–336
- [2] V. BAFNA, S. MUTHUKRISHNAN, AND R. RAVI, Computing similarity between RNA strings, Proc. 6th Symp. Combinatorial Pattern Matching (1995) 1–16
- [3] V. BAFNA, H. TANG, AND S. ZHANG, Consensus folding of unaligned RNA sequences revisited, Journal of Computational Biology (2006) 13(2):283–295
- [4] D. MAIER, The complexity of some problems on subsequences and supersequences, Journal of the ACM (1978) 25(2):322–336
- [5] M. MIDDENDORF, On finding various minimal, maximal, and consistent sequences over a binary alphabet, *Theoretical Computer Science* (1995) 145:317–327
- [6] D. SANKOFF, Simultaneous solution of the RNA folding, alignment and protosequence problems, SIAM Journal on Applied Mathematics (1985) 45(5):810–825
- [7] J. SETUBAL AND J. MEIDANIS, Introduction to Computational Molecular Biology, PWS Publishing Company (1997)
- [8] L. G. VALIANT, General context-free recognition in less than cubic time, Journal of Computer and System Science (1975) 10:308–315
- [9] M. S. WATERMAN, Introduction to computational biology, Chapman and Hall (1995)
- [10] M. S. WATERMAN AND T. F. SMITH, RNA secondary structure: A complete mathematical analysis, *Mathematical Biosciences* (1978) 41:257–266
- [11] M. ZUKER AND P. STIEGLER, Optimal computer folding of larger RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Research (1981) 9:133–148