
SEA-SSD: A Storage Engine Assisted SSD with Application-Coupled
Simulation Platform

CHAO SUN†, ASUKA ARAKAWA† and KEN TAKEUCHI†

† Faculty of Science and Engineering, Chuo University

1. Introduction
Solid-state drives (SSDs) are replacing the hard
disk drives (HDDs) as the primary storage due
to the advantages in speed, reliability and power.
In the conventional database application, SSDs
are used as the cache for HDDs to balance the
performance benefits and costs. Since the
bit-cost of NAND flash continuously decreases,
the SSDs are proposed as the storage for the
database. Since the storage engine (SE), a
software component in the database
management system (DBMS), controls the data
storage. The data information inside the SE is
utilized to improve the SSD write performance,
which is relatively slow due to the inherent
characteristics of the NAND flash memories.

2. SSD Based DBMS
The garbage collection (GC) overhead of the SSD
is the write performance bottleneck of the SSD
[1]. One approach to reduce the GC overhead is
clustering data with similar activities in the
same block of the NAND flash. To realize it,
upstream information from the SE is utilized. As
illustrated in Fig. 1, each layer of the storage
stacks of the operating system (OS) has to be
modified to pass the hint information from SE to
the flash translation layer (FTL) in the SSD
controller, conventionally [2]. It introduces
additional overhead and engineering efforts.
Hence, the OS is bypassed in the proposed
SSD-based DBMS. Hint information passes from
the SE to the FTL directly.

3. Storage Engine Assisted SSD (SEA-SSD)
Figure 2 describes the overall architecture of the
proposed SEA-SSD [2]. All the data from the
database are classified into the dynamic and
static data. Thus, the SSD is partitioned into
two segments: Segment_dyn for the dynamic
data and Segment_stat for the static data. Three
kinds of hint messages are passed from the
InnoDB SE. The first hint passes the database
setting hints such as the redo log and buffer pool
size to initialize the size of Segment_dyn in the
SSD. The second hint preliminarily classifies the
data in the SE with a dynamic data model
represented by the SE internal information such
as the log sequence number. As shown in
Algorithm I of Fig. 3, when the second hint is
‘SEG_dyn’, or logical value 1, the data is written
to Segment_dyn [2]. Otherwise, it is written to
Segment_stat. Last, the third hint predicts the

In this paper, a storage engine assisted solid-state drive (SEA-SSD) has been proposed to
improve the storage performance for the database application by co-optimizing the SSD
controller and database storage engine. Data with different activities are predicted,
classified and aggregated into the same block of the NAND flash memory. From the
experimental results, maximum 24% speed boost, 16% power reduction and 19% endurance
enhancement are achieved, without requiring a cache layer for the SSD.

App: Application, DBMS: database management system,
SE: Storage engine, FS: File system, GBD: Generic block device,
DD: Device driver, FTL: Flash translation layer (SSD controller)

FS

GBD

DD

NAND Flash

OS

App

SSD

DBMS

fopen ()
SE

DBMS

open_ssd()
SE

FTL FTL

NAND Flash

hints

Logical
address

Physical
address

Bypassing
OS layers

Conventional scheme Proposed scheme

Logical
address

Physical
address

Fig. 1. The proposed SSD-based DBMS [2].

dynamic data with the flush list. When new data
enters the flush list, it indicates that this data
will be flushed to storage in the near future.
Hence, the logical page address (LPA) of the data
is sent to the SSD controller. When GC is
triggered, the data of the hinted LPAs will
migrate from Segment_stat to Segment_dyn,
described in Algorithm II of Fig. 3.

4. Evaluation
An application-coupled platform has been
designed to evaluate the proposed scheme. In
this work, the database is directly coupled with
the SSD for optimizing the SSD controller. SSD
is virtualized for the simulation acceleration. As
mentioned earlier, the OS is bypassed in the
interaction between the SSD and database.
Table I describes the SSD workload settings [2].
Online transaction processing (OLTP)
benchmarks, Sysbench [3] and TPC-C [4], are
used. From the experimental results, maximum

24% SSD speed boost, 16% power reduction and
19% endurance enhancement are achieved at the
SSD capacity of 3 GB (33% over-provisioning) [2].
As illustrated in Fig. 4, the SEA-SSD improves
the SSD performance by 7%-24% at a reasonable
over-provisioning range of less than 50%.

5. Conclusion
A SE assisted SSD has been proposed to improve
the SSD performance for the database
application. By obtaining the hint messages
from the upstream layer, specifically SE of the
database, the data are better classified and more
efficiently stored in the SSD. Consequently, the
garbage collection overhead of the SSD is
reduced and maximum 24% SSD performance
improvement is achieved.

Reference

[1] K. Takeuchi et al., “A 56 nm CMOS 99 mm2 8 Gb
multi-level NAND flash memory with
10 Mbyte/sec program throughput,” IEEE J. of
Solid-State Circuits (JSSC), vol. 42, no. 1, pp.
219-232, 2007.

[2] C. Sun et al., “SEA-SSD: a storage enegine
assisted SSD with application-coupled simulation
platform,” IEEE Trans. on Circuits and System I
(TCAS-I): Regular Papers, 2014. (accepted)

[3] http://sysbench.sourceforge.net/.
[4] http://www.tpc.org.

Table I. Benchmark statistics for evaluation [2].

MySQL
benchmark

SSD
workload

Buffer
pool size

(MB)

Redo log
size

(MB)

Write
size
(GB)

Read
size
(GB)

Write
request

ratio

TPC-C
T1 256 4 25.1 41.7 37.5%
T2 512 8 21.9 15.7 58.2%
T3 1024 16 19.3 4.07 82.6%

Sysbench
S1 256 4 11.1 34.1 24.5%
S2 512 8 8.93 14.1 38.8%
S3 1024 16 7.94 0.97 89.1%

SSD controller

SSD

Read/Write
requests

InnoDB SE

Segment _statSegment_dyn

Segment _dyn
capacity
estimation

Dynamic
data
predictionStatic data

migration

SE settings ‘0/1’

Hints

Preliminary
classification

Logical page addr.

‘SEG_dyn’
(‘1’)

‘SEG_stat’
(‘0’)

(2) (3)

(2)

(1)

(1)

(3)

Fig. 2. The overview of the SEA-SSD [2].

-10%
-5%
0%
5%

10%
15%
20%
25%
30%

3 4 5 6 7 8

SS
D

 w
ri

te
 p

er
fo

rm
an

ce
 g

ai
n

SSD capacity (GB)

T1 T2 T3
S1 S2 S3

Baseline = 0%

<=50%
Over-provisioning

Realistic region for
enterprise SSD

Fig. 4. SEA-SSD write performance evaluation [2].

Hint (2)==‘SEG_dyn’?

Write to
Segment_dyn

Write to
Segment_stat

Y N

Algorithm I Valid page addr. in
recycling block hits LPA

hint [Hint(3)] list?
Y N

Copy page to
Segment_dyn

Copy page to
Segment_stat

GC: garbage collection
LPA: logical page addr.

Enough
free pages?

Y

N

GC done?

Y

N

Algorithm II
Flash translation layer (SSD controller)

Data from SE,
Hints [Hint(2)+Hint(3)]

InnoDB SE

End

GC starts

Fig. 3. SSD management algorithm flow chart [2].

