本コーナー「情報の授業をしよう!」は、小学校 や中学校で情報活用能力を育む内容を授業で教え ている先生や、高校で情報科を教えている先生が、 「自分はこの内容はこういう風に教えている」と いうノウハウを紹介するものです. 情報のさまざ まな内容について、他人にどうやって分かっても

らうか、という工夫やアイディアは、読者の皆様 にもきっと役立つことと思います。そして「自分 も教え方の工夫を紹介したい と思われた場合は、 こちらにご連絡ください.

(E-mail: editj@ipsj.or.jp)

情報 II における「3D プリンタ」を用いた 授業実践

浅井雄大

神奈川県立相模原城山高等学校

3D プリンタの魅力と授業活用

近年、文部科学省は情報教育の充実を図るべく、 学習指導要領の改訂を進めている。特に令和2年 (2020年) 度より全面実施となった高等学校「情報 I・ 情報 III では、プログラミング教育の推進とともに、 情報技術を活用したものづくり教育の重要性が強調 されている.これにより、単なる情報処理能力の育 成にとどまらず、創造的思考力や問題解決力の育成 が求められている.

これらの背景を踏まえ、3D プリンタは教育現場 において注目すべきツールとなっている.3Dプリ ンタはコンピュータ上で設計した3次元モデルを立 体物として出力できる装置であり、デジタルデザイ ンの理解とものづくりの体験を統合することができ る. この特徴は学習者に、情報技術の実践的な活用 力や空間的思考力を自然に身につけさせる上で有効 である. 本稿では、2025年度の2年次対象選択必 修科目である情報 II (2 単位) の授業 (35 人×5 講 座)において3Dプリンタを活用した以下の4つの 授業実践を紹介する.

- ① 3D プリンタの特性を踏まえた 3D モデリング手法
- ②スマホスタンドの分析と改良
- ③テーマ別製品開発
- ④ 3D プリンタ製サイコロの分析

これらの授業を通じて、生徒は技術的スキルに加 え、設計の工夫や実験的検証を通じた論理的思考、 さらにグループワークでコミュニケーションや協働 性を養うことができた. こうした取り組みは、文部 科学省が掲げる「主体的・対話的で深い学び」を実 現する有効な手法であると考えられる.

3D プリンタの特性を踏まえた 3D モデリング手法

3D プリンタとは、コンピュータで設計された3次 元モデルデータをもとに、樹脂や金属などの素材を層 状に積み重ねて立体物を造形する装置である. 今回の 実践で使用したのは、熱で樹脂(フィラメント)を 溶かして積層する FDM (Fused Deposition Modeling) 方式のプリンタである.

今回の単元では、使いやすいフリーソフトや教育

用ツールを主に活用し、生徒に以下の技能を身につ けさせることをねらう. 図-1 に記した目標を掲げ、 ①熱で樹脂を溶かして積層する FDM 方式 (図 -2) と②造形する製品の、空中に浮いてしまっている部 分を指すオーバーハング(図-3)について理解を 深め、フリーの 3D モデリングソフトを使用した練 習問題を通して技能を身につけさせる.

本単元の内容を確認するための課題として、図-4 に示した練習問題を生徒に課した. 写真にあるよう な 3D モデルのデータを生徒に配布し、モデリング ソフト上で角度や造形に手を加えながら、オーバー

今日の目標

①FDM方式(熱溶解積層方式) ②オーバーハング



3Dプリンタの特性を理解して モデリングに活用しよう

■図 - 1 授業スライド(3D プリンタの特性を踏まえた 3D モデリ ング手法(1)

FDM方式(熱溶解積層方式)

熱で樹脂を溶かして積層する方式

■図 - 2 授業スライド(3D プリンタの特性を踏まえた 3D モデリ ング手法②)

オーバーハング

造形する製品の空中に浮いている部分のこと **接地面**に対し、せり出した部分が45°以上であれば サポート材をつける

■図 - 3 授業スライド(3D プリンタの特性を踏まえた 3D モデリ ング手法③)

ハングしないモデルを作成した. 多くの生徒は、穴 が開いた面を上にすることで問題を解決したが、一 部の生徒は、展開図のようなモデルを作成し、後か ら組み立てる設計で問題を解決していた.

生徒がつまずきやすかった点は下記のとおりである.

- 3D 空間の感覚 物体の奥行きが分からず、モデルが重なるな どして正しく配置できなかった.
- 操作手順に慣れること モデルの回転や拡大の操作が混同し、思うよ うな操作ができていなかった.
- 非連結部分による失敗

連結(グループ化)がうまくいかず、画面上で モデルを移動する際にパーツが分かれてしまう.

これらに対応するため、段階的な課題設定を意識 した練習問題や個別指導の時間を多く用意すること が必要だった.

スマホスタンドの分析と改良

次に、3D プリンタ製のスマホスタンド(図-5)を

■図 - 4 授業スライド(3D プリンタの特性を踏まえた 3D モデリ ング手法(4))

■図-5 3D プリンタ製のスマホスタンド

題材にして、使い勝手の改良案を考え、新規モデルの 作成に挑戦した、生徒は実際の製品を観察し、改善 すべき点(安定性、サイズ、設置角度など)を図-6 で示したワークシートに沿って記入、議論した上で、 具体的な設計に反映させた. ワークシートの内容と しては、配布されたスマホスタンドについて分析す べき点をあらかじめ設定し、記入することで分析点 の整理、議論の円滑な進行をねらう内容とした. あ る程度論点を整理したことで、後のスマホスタンド 設計についてのアイデア出しやスケッチ作業(図-7), 3D モデル作成 (図-8) を対話的に行うことができた.

情報 II No.4 3Dの新製品を開発しよう① 教科書P12~p 13

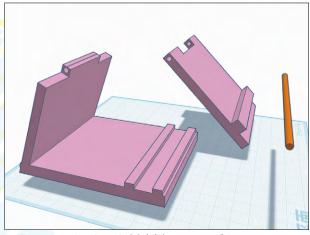
課題① 既存のスマホスタンドを分析しよう

. スマホを置いたときの安定感はどうか 支えるところの角度がゆるいので低い

2. 縦置き、横置きはしやすいか

3. 充電ケーブルを挿しながら操作しやすいか

縦置きでは無理。

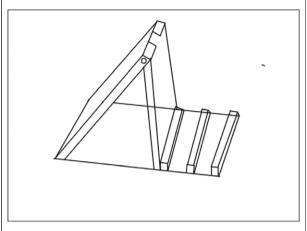

4. 持ち運びやすさ(軽さ・コンパクト)はどうか

持ち運びやすい

その他、気になった点・改善できそうな点はあるか

力が加わったらすぐに壊れそう

■図 - 6 生徒によるスマホスタンドの分析



■図-8 スマホスタンド(改良版)の3Dモデル

結果として、スマホスタンドを実際に印刷 (図-9) し、工夫点をまとめた発表を行い、相互評 価も実施した. この単元のまとめとして、生徒が既 存のスマホスタンドを観察・分析し、使い勝手の改 善点を考えた上で新たなモデル作成に挑戦した. 生 徒からの振り返りとして.

情報 I No.4 3Dの新製品を開発しよう①

課題② 改善案に基づいてスマホスタンドの設計スケッチを描きましょう。 【スケッチエリア】 (寸法も記入しよう)

【補足説明】 (工夫した点・使い方など)

角度調整ができるようにした。 ストッパーでスマホが安定しておけるようにした。

※紙で欲しい人は申し出てください。 後日写真を撮ってロイロ提出してもらいます。

■図 - 7 スマホスタンド(改良版)のスケッチ

■図-9 改良前のスマホスタンド(左)と改良後のスマホスタ ンド (右)

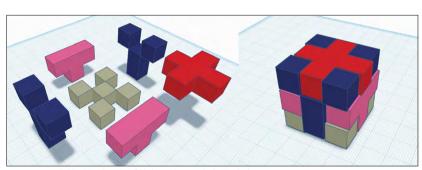
=連載 情報の授業をしよう!

- 普段の座学よりも実際に手を動かし、分析しなが ら作ることでより深く学べた.
- 初めて 3D プリンタに触れて楽しさを感じた.
- 角度調整など難しかったが達成感があった。
- 想像以上にできあがった作品が小さくて驚いた. など、多様な声が寄せられた。また、グループでの協 働作業を通じ、コミュニケーションや相互支援が活発 に行われたことも大きな成果である. これらの体験を 通して、生徒は情報技術の実用性と創造性を実感し、 学びの意欲を高めることができたと考えられる.

テーマ別製品開発

グループ単位でテーマを設定し、新たな 3D プリ ンタ製品の企画・制作に取り組んだ. テーマ例とし ては「各教科の困りごとを解決するアイテム」や「学 校で使える文具」などを設定するグループが多かっ た(図-10). グループ内で役割分担を決め、アイ デア出しから設計, 造形, 仕上げまで協力して行っ た. この過程で、問題解決能力やコミュニケーショ ン能力が養われた.

3D プリンタ製サイコロの分析


最後に、データサイエンスの単元において「サイ コロは公正か? | というテーマで検証実験をグルー プで行った. サイコロの形状や重心の偏りが投げた ときの目に影響を与えることを科学的に探求する内 容である.

まず、どうすればサイコロが公正であると判断で きるか考えさせた。生徒が考えた「サイコロの公正 さを確かめる方法」として以下が挙がった.

- たくさん振る
- 重さを確かめる
- 何回もサイコロを転がす
- 重さと正方形か
- みんなでたくさん振る

次に、サイコロ(図-11)を複数回投げて出目の データを収集し、Python プログラミング環境であ る Google Colaboratory を用いてデータ分析を実施 した。具体的には、得られたデータのグラフ描画や 統計的仮説検定(今回はカイ二乗検定)を行い、出 目の偏りや公正性の有無を科学的に判定した。授業 ではグラフ描画や仮説検定を行うためのプログラミ ングは行っていなかったため、生成 AI に質問しな がらコードを記述させたが、聞き方の違いによって 生成させるコードに差異が生じるのを防ぐため、聞 き方はある程度指定した.

本課題では、3Dプリンタで作成したサイコロの公 正性を、仮説検定を用いて科学的に検証した. Google Colaboratory 上の Python プログラミングによるデー タ解析とグラフ描画(図-12)を通じて、実験データ の偏りや出目の確率分布に関する理解を深めた. 仮 説検定は統計的思考を促進する一方で、授業内で基 礎から教えるには限界があり、数学科との連携によ る指導の充実が望まれる. さらに、出目の確率を意 図的に変えたサイコロを設計・製作させる活動も加 えれば、 論理的検証のみならず創造的探求を促進し、

■図-10 生徒が作成した「数学で使える立方体パズル」

■図 - 11 実際に使用した 3D プリンタ製サイコロ

生徒の学びをより一層深められると考えられる.

理論と実験,ものづくりを融合させるこの課題は, 生徒の論理的思考や実験技術の向上に寄与した.造 形による形状の微調整も興味深い体験となった.

授業実践の成果と課題

本稿で紹介した4つの実践を通じ、生徒には主に 以下のような成果があった.

- 技術的理解の向上
 - 3D モデリングやプリンタの操作を通じて,情報技術の実践的活用力が身についた.特に,設計の段階での寸法管理や形状の工夫を意識する姿勢が養われた.
- 創造力・問題解決力の育成

既存製品の改良や新製品開発では,生徒が主体的にアイデアを出し,設計の制約を考慮しながら課題を解決する経験を積んだ.

- 協働とコミュニケーション能力の向上 グループ作業を通じ、役割分担や意見交換を 行いながらプロジェクトを進める力が育まれた。
- 論理的思考力の発展

「サイコロは公正か?」の検証実験では、仮説の設定と実験による検証、結果の考察といった科学的探究の基本プロセスを体験できた.

まとめと今後の展望

本稿では、文部科学省の学習指導要領の方向性を 踏まえ、情報 II の授業における 3D プリンタ活用の 意義と具体的実践例を示した。 3D プリンタは単な る造形機器でなく、情報技術とものづくりをつなぐ 架け橋として、生徒の主体的・創造的な学びを促進 する強力な教育資源であると確認できた。

今後は、より実践的で多様な課題設定や、AI などの最新技術と 3D 造形を組み合わせた授業展開も期待される. さらに、教員の専門性向上や教材開発、学校間連携によるノウハウ共有も重要である.

技術革新が急激に進む現代において、教育現場は 柔軟かつ積極的に新技術を取り入れ、生徒に未来を 切り拓く力を育てていく責務を負っている。本稿が その一助となれば幸いである。

(2025年7月29日受付)

浅井雄大 asai-f9q@pen-kanagawa.ed.jp

神奈川県立相模原城山高等学校の情報科教諭. 情報 II の授業を中心にプログラミングやデータ分析、3D プリンタを活用した授業を展開.

■図 - 12 授業スライド(生成 AI を使ってグラフ描画プログラムを作成させる)